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Perturbation theory for the é-correlated model of passive scalar advection
near the Batchelor limit
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The third-order correlation function of the scalar field advected by a Gaussian random velocity, with a
spatial scaling exponent-2¢, and in the presence of a mean gradient, is calculated perturbative®/linThis
expansion corresponds to the regime close to Batchelor's advection by linear diffeomorphisms. The scaling
exponent is found to be equal to 1 in dimensions 2 and 3, up to corrections smalleédtharmmplying an
anomalous scaling of the third-order correlation function and the persistence of small scale anisotropy.
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The investigation of the statistics of the passive scalathese can be derived exactl§—8| extending the original
field advected by random flow is interesting for the insight itanalysis of the two-point function by Kraichnd2]. They
offers into the origin of intermittency and anomalous scalinghave the form
of turbulent fluctuations. The problem studied in this paper is
stated simply by b
2 [Dap(ri=1))+ ko510 701 (6(r1) 61 )

90+ (v-V)0=kV20 (1) "
with the scalar fieldd forced b i - =2 9a0sCan(ri—rj)(6-+) 2

y the externally imposed gra < i i]

dient g. It is convenient to subtract out the gradient and
study the fluctuating fieldd(r)=0(r)—gr. It turns out that
even a Gaussian random, but scale invariant, velocity field —22 gaDap(ri—r))ap(0-- )" (20)
results in nontrivial anomalous scaling of the passive scalar 7
structure function{[ ® (r) — ®(0)]") for n>2. This has been
suggested by Kraichnahl], on the basis of a closure
scheme, for a-correlated velocity model where

N

(with implicit summation over repeating indige$Ve restrict
ourselves to the inertial range of scales, where large
enough that the molecular diffusivity can be neglected:
Y ’ ’ >7]E(K/D0)llgu'
(val(r,Dup(r’,t"))=8(t=t")Cap(r—r"), (28) The analysis of Ref.3] is based on the expansion of Eq.
. (2) in ¢,<1 about the diffusion limit,=0, while we con-
with sider the complementary limit of, =2—¢, e<1. Reality for
the white velocity model{,=4/3, lies in between. The ex-
Dan(r) =Cap(0) = Cap(r) pansion in smalk is more involved than what was required
ab in Refs.[3,4] for two reasons. There are an infinite number
=Dyl (d—14¢,)8ap—¢ % Ir|% (2p  ©of degenerate modes fa=0, which are all mixed by the
0 ] perturbation, which itself is singuldb,9]. That is, the per-
turbation is formally small because ef but in certain re-
(where ¢, is the scaling exponent ardl the space dimen- stricted regions of configuration space it is the biggest term
sion), which he has introduced some 30 years fgJo The in the equation. It must be treated by the method of matched
existence of the anomalous scaling has been demonstratagymptotic expansions. The exponent we find for the third-
explicitly by Gawelski and Kupiainen3], and Chertkov order correlator{10,11 A3~1 implies that the anisotropy
et al.[4] for certain limits of thiss-correlated model and by introduced by the mean gradiemnf,on the large scales, de-
Shraiman and Siggib] for a generalized phenomenological cays more slowly as one descends in scale than that predicted
model where temporal correlation of the advecting field is seby Kolmogorov 1941 (K41) theory [12,13 (which for
by eddy turnover. These calculations are based on the sd;=2—¢€ predicts an exponentte). Since the experimental
called Hopf equations—the stationarity conditions of theexponent is also approximately ofe4], it will be of interest
equal-time multipoint correlators. For the white velocity caseto compare also the full coordinate dependence of the three-
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point correlation function when the latter becomes availablef Ly(d) corresponds to the smallest expongns obtained
from experiment or simulations. One way of expressing ouf5] for A/2=v yielding, in thel =1 sectorA=1 independent
results for this correlation function is as an expansion in theof d.
degenerate modes of tlee=0 problem. Our matching deter- We shall need the explicit form of the, operator:
mines all the coefficients explicitly.

Determination of the anomalous exponents reduces tal \ R
finding the zero modes of the linear operator entering thg gy Loti=1(W, x,7)
Hopf equation[3-5], i.e., the left-hand side of Eq(2),

which in the present modeland x—0 limit) is the , Jo—15-2i¢&l30,
generalized Richardson diffusion operatort (d,¢,) =d(& _1)a§¢]+w¢_”(”+l)¢'

EE?ﬂDab(ri—rj)a?ia?j. The {,=2 case is the Batchelor 5
limit [15], which is constrained by an overall &) XSQ(d) )
symmetry so that the spectrum bf=L(d,2), also referred —r(d_ 2 _
to here as the Batchelor-Kraichnan operator, can be com\:-LVZe_re2 V(:Tl)z_gﬁd Az)lgd]yi /29+7\)I [(d+1)/2dt]l(.lth
pletely constructed with the help of Lie algebraic methods ) andlg=(1)(71-9,,= 12 9,,). In agreement wi
[5,16]. Here it will serve as a starting point for the perturba-Ed. (5), the 9, and I3 are diagonalized by exp(x) and
tion for £,=2—¢ 171.*i 75, the latter corresponding to the=1, m’'==*1 sec-
tor. Requiring the left-hand side of E¢p) to vanish would
make it into a Legendre equatidd8] with » and hencex
entering as an eigenvalue.

Next we define the perturbation operator in EB).

L(d,2—e)=Lo(d)—eL4(d) )

to the leading order ire<1. (Note that we are ultimately
interested in the physical case §f=4/3) The perturbation d-1
expansion around, =2 is a singular problem, which, how-  Li(d)=L+— I +d—2)+\*=d\ - g-1 o/
ever, can be addressed by the method introduced in[Ref. (69)
as we explain now.
Let us start withLy. It is convenient to introduce the i
variablesp, = (1 —r»)/\2 andp,= (1 +>,—2r3)/\/6. (On
occasion we shall refer io=1,2 index labeling the vectors

as the “pseudospace” index to distinguish it from the £=2, —In(|p)[(d+1)p3(#252— L 5353)
d-dimensional real spage.Next we ‘“factorize™ p? 3
==.Rii/(x)& 7%, whereR represents pseudospace rota- —2p2p2(20— 1 59)]. (6b)

tions byy, and», , are two orthogonal unit vectors spanning
the space ofp;,p,. This factorization is just the singular |n Eq. (6b), the summation extends over all the cyclic per-
value decomposition of the? matrix. Ind=3, we also de- mutations of ;,r»,f3), resulting in the following symmetry
fine 73=n1X7=p1Xpo/|p1Xp,| each component of for p: p;— —pi/2+(\3/2)p, and pr,— T (V3/2)p1— pol2.
which is invariant under the action ofa&l [g]. Another  The expansion breaks down ferln|p;|<e 1. Whené¢—oe,
important invariant is the area of the,,r,,r; triangle: j.e. when the three poinf§, r,, andr are almost aligned,
{=|p1Xpa = &6, the operatore£ becomes much larger than the Batchelor-
The zero modes of z(d) for d=2,3 have been con- Kraichnan operatot.,. This can be seen by expanding the
structed in Refs[5,9]; e.g., ind=3, the complete set of full operator in the limit¢—. Defining for d=3 and the
eigenfunctions has the form I =1 sectory_,=?¢(£,7,x) (Where vector notation re-
flects the triplet nature df=1 stat¢ one finds

A _ Aigx s /2pg,m’ I ~
” =W EPET (D (1), 4 R R R
Voatmm man 7 Lo=—IN[1—(1- & ?)cod2x)[£°Log+ EL 0+ Log
where &= (£2+ £2)12¢,&,, D' () is the matrix element 27 27
: +0(1/¢)]+ +— |+ -—, (7
of the representation of the $8) group[17] of orderl, and (L O]+ x=x 3 X7XT 3 (73
P‘j’m/(g) is the Legendre-Jacobi functidi8]. (Note that
guantum numbem’ corresponds to rotations of thg triad The operatord; are
about 75 in pseudospace.To ensure analyticity in the .. 5
{=|p1X po|—0 limit (which corresponds to all three points Lo¢=3(cosy—1)(4cosx—1)[—(2£d,—N)
of the correlator being on one lineA/2—maxv,—v—1) A~ s
must be a positive integer. This is because &sO, +4n1:9y Jee, (70)
§~§71—)OO, and P]q},m(g),vgma)(v,*V*l).
The third-order structure function, or the skewness, which Ly¢=Fcosy siny(cosy—1)[(2£d,—1)
is the physical object of our interest, has odd spatial parity " = . " s .
and hence is only nonzero in as much as the mean scalar XM 0y = M1 0y)) = 2727 9 1, (70

gradientg introduces a particular direction. Hence the rel-
evant eigenfunctions are thewaves,| =1. The zero mode and



Log=—2(coSx—1)(4codx—1)(9,2+5)¢
+&siny cosyd, ¢+ 5(1+4 cosy

~8c0$x) 71- 0, - (7d)

In Eq. (7d), A has been set equal to 1—its unperturbed

value—since the corrections would be higher ordet.ifithe

singular nature of the perturbation follows from the fact that

the £, term enters the prefacto? so that when
£>(1le)?, eL>L,. This situation calls for the “boundary

layer” type matched asymptotic analysis, which we outline

below.

Let us assuma=1+ ¢4, define the rescaled “inner” vari-
able z=¢€'%, and introduce the functiong(z,yx,7)
=72M ¢1(2,X) 31 +1 (2, x) 7,]. The prefactor is chosen to
offset the scaling factos'? [see Eq(4)], which vanishes for
collinear points. Physics requires that is bounded when

z—oo, With this change of variable and functions, the prob-

lem can be written, provideg=¢"1, as
[(Z293+329,) +52°U(x)

X[(20)?= 719, D+ L+ elopt -]

X(pym1t+idrm2)=0, (8a)
with
U(x)={(cogx—1)(4 cogx—1)In[1—cog2y)]
+(x—x+2m/3)+(x—x—27/3)}. (8b)
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equation determining,q(x), and the correction to the scal-
ing exponentd=(\—1)/ € is identical to Eq.(9).

Before solving Eq(9), one needs to determine the appro-
priate boundary conditions. Because the three-point correla-
tion function must be odd under— — p;, it is implied that
a(y+m=—a(y). This, together with the periodicity(y
+2m/3)=a(y), resulting from the invariance under cyclic
permutation ofr;, r,, andrs, implies thata(y+m/3)=
—a(y). The limit y—0 corresponds to the case whekeand
r, come close togethefr,—r,|<|r3—ry|,|r,—r4]. In this
limit, the correlation function must be invariant whepand
r, are permuted, implying that(y) must be even. Since is
even neary=0 anda is antiperiodic with periods/3, a(m/
6)=0.

At small, but finitee, Eq. (9) reduces fory—0, to

—x*In(x)a"(x)+ da(x)=0. (109
Introducing the change of variabley=—-In(y) and
f(y)=a(x), Eq. (103 reduces to the followingKummer
equation:

y(f"+£")+6f=0. (10b
The behavior of the solution whep—0 is
f(y)~y ¢ when y—oo. (100

This function divergeggoes to zerbwhen §<0 (5>0).
Since y—0 (for £ 1=0) corresponds tp,;—0, the per-
turbation expansion leading to E) is valid only fory

The Operatorg_l and|:2 can be deduced from a systematic =-Iny<1/e. Hence, to determine the correct boundary con-

expansion of the operator in powers ©btarting from Egs.
(7a—(7d).

Physically interesting solutions must be boundguait
nonzerg in the limit when the points in the correlator ap-
proach collinearity, which implies that whem-~, the solu-
tion is a function ofy only. By direct substitution, one finds
that ¢, =0 and ¢,=a(x), wherea(y) is an unknown func-

dition asy—o the solution of Eq(9) must be matched with
the “inner” solution describing the correlator with two
points near coincidence. The latter is governed by the equa-
tion derived directly from Egq.(3) by expanding in
p1/po<€1instead ofe and is written conveniently in the polar
coordinatesp, / p,|?= &~ 2x?/4 andh=arctari2/éy) (restrict-

ing here tod=2 for simplicity). The natural radial variable in

tion, decomposed for convenience as a Fourier serigg in this “inner” equation turns out to b¥ =[p,|“. The region of
a(x) = 484€'%. Whenz—0, the problem reduces to the un- maiching with Eq.(109 corresponds to 3Y<1 and 6=0.
perturbed Batchelor-Kraichnan operator, up to small correcQuite generally the solution neal=1 behaves as
tions. In the matching region, defined by-0 but é—w», or ~ A+B(1—Y)* with &>0 required to keep the solution from
equivalently, &é<e 12 the ¢ dependence of each Fourier diverging. In the matching regiol~1+eln(x/2) so that
mode iny, g, must match with the asymptotic behavior of only the constant terrA must be kept when computing to
the eigenmodes df, [Egs.(4) and(5)], which is best found the leading order ire. Comparing with Eq(10¢) one con-
via their integral representation given in Reff5,9,17. One cludes that matching the “inner” solution is only possible
finds that the functionsp; , must behave ag,  e?q|/2z ~ for 6=0. _ _ _
+e(1—g?)/4z2+--- and ¢zyq=(1—eq2/822+---)sgn(q). ~ For 6=0 the solution of Eq.(9) is .a()()=sm(7r/6—)()/
The crossover equation, E(B), can be solved analytically, Sin(7/6) for 0<y<m/3, which is continued over the full
to the leading order i, determining the sma#l asymptotics ~ fange ofy using reflection symmetry and perlod'lcrry deﬁned
of ¢, ,in terms of the, so far, free functicay) controlling ~ aPove. One observes thety) has an apparen| singularity
the o behavior. The imposition of the matching condi- "€ar x=0 (and other points related by symmetwyhich is

tions determines(y) via an eigenvalue equation fa regularized only fory<e™ ' via the crossover to the “in-
ner” solution for nearly coincident pointg,/p,<e”Y¢ as

discussed above. Note that althoughCie) there is no cor-
rection to thex=1 eigenvalue, the computed eigenfunction is
nontrivial: it is a superposition of many,, modes since
way. As in the three-dimensional case, the behaviogfere  a,~1/q for large q. Also note that the calculations in two

is of the form ¢ =a,4(x) &2+ 0(£M?71), and the function and three dimensions are identical and give the same result:
a,q is determined by a matching condition. Surprisingly, the5=0. Of course one does not expett0 to persist beyond

U(x)(d2+)a(x) +65a=0. 9)

The analysis ind=2 can be carried out in an identical
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the leading order considered here. The next order correctioipr a white noise velocity field, the anisotropy induced at

according to Eq(7), is expected to maké~O(e'?).

large scales decays more slowly than predicted by standard

Thus, the main result of this paper is as follows: the scalphenomenological argumenid2,13,23. We conclude by

ing exponent of then=3 structure function behaves &s-1,

mentioning numerical results demonstrating that a large scale

up to corrections of ordee®?. The exponent of the three- anisotropy, such as a large scale shear, imposed on a turbu-
point correlation function is therefore smaller than the “na-lent velocity field, may also result in a large anisotropy at
ive” scaling exponent, equal tofle, therefore demonstrat- small scalg24], suggesting also the existence of an anoma-
ing that the behavior of the skewness near the Batchelor limiious exponent for the=3 structure function of the velocity

of the Kraichnan’ss-correlated model is anomalous. Disper- field.

sion in the presence of a mean gradient has been shown

experimentally{19,20 and numerically{21,22 to give rise

to strong intermittency effects, resulting in a skewness that A.P. thanks DRET for support under Contract No. 95-
remains of order 1, independent of the Reynolds number. A2591A, and E.D.S. was supported by the NSF under Contract
is the case in real flows, it is interesting to notice that everNo. DMR9121654.
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